
International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-2014 496
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

USB Capabilities and Bootability of Portable
Devices

Siddharth Kaul, Kamakshi Kaul, Parth Maheta

Abstract— Almost every portable devices uses Universal Serial Bus(USB) for PC connectivity and to enhance their capabilities. Such
capabilities include interfacing and connection of features like charging, Audio, Host and Video. This paper implements and explains the
basic USB functionality of USB Audio, USB Mass Storage and Secondary Bootloading through USB channel. This paper provides the basic
information one requires to implement these device classes using available stack library by clearly explaining the important aspect in
implementation. It is also shown that a portable device can be read, write and reprogrammed using another portable device using the USB
interconnection. By performing the implementation, readers can take the first steps towards non PC centric development environment.

Index Terms— Universal Serial Bus, USB Audio class, USB Mass Storage class, Secondary Bootloader.

—————————— ——————————

1 INTRODUCTION
This paper demonstrates use of USB stack by implementing
USB Audio and Mass Storage Classes on a NXPLPC1768
board and develops the idea of booting a portable device us-
ing an OTG enabled portable device.

USB has enough bandwidth for sound, even high-quality
audio. Many applications relating to audio playback and au-
dio recording can take advantage of this large bandwidth of
USB. A versatile bus specification like USB requires standard-
ized audio transport mechanism to keep software drivers as
generic as possible. A major issue in audio is synchronization
of data streams. A robust synchronization scheme on isochro-
nous transfer has been developed and incorporated in USB
specification. Audio Device class definition adheres to robust
synchronization scheme to transport data reliably over the
bus.

USB Mass Storage Class specifications are supported by
USB Mass Storage Class Working Group. The focus of this
paper is only on USB Mass Storage Class Bulk Only Transport
specification and USB Mass Storage Class Bootability Specifi-
cation. Bulk Only Transport is the transport of command, data
and status occurring solely through via bulk endpoints (not
via interrupt and control endpoints). Bootability specification
defines a set of commands and associated data sufficient to
allow the loading of a program or an operating system stored
on a USB Mass Storage Class Device.

USB OTG is supplement to USB2.0 specification that aug-
ments the capability of existing portable devices and USB pe-
ripherals by adding host functionality for connection to USB
peripherals. This supplement enables point to point connec-
tions and ability of a portable device to play dual role of either
host or peripheral and allowing dynamic switching between
these two roles.

All vendors provide their own custom stack for their inde-
pendent chips to be used as stack or apis for USB. The experi-
mental board used landtiger is a custom designed derivative
of Keil’s MCB1700 board. So Keil custom stack for MCB1700
has been implied in this experimentation. The core files are
used as it is and the descriptor files has been modified to suit

the board and rearranged for better comparison with the spec-
ification. This paper will help the developer understand and
decipher the randomness that is the USB stack.

2 IMPLEMENTATION OF USB AUDIO
2.1 Introduction
USB Audio is basically a completely different protocol written
over the base USB specification. Audio function is located at
the interface level of device class hierarchy. Audio functions
are addressed through their audio interfaces. Each audio func-
tion has a single AudioControl interface and can have several
AudioStreaming and MIDIStreaming interfaces. The Audio-
Control (AC) interface is used for the control of audio func-
tions whereas the AudioStreaming (AS) interfaces and
MIDIStreaming interfaces (MS) are used for transport audio
streams and MIDI data streams into and out of the audio func-
tion respectively. The collection of the single AudioControl
interface and the AudioStreaming and MIDIStreaming inter-
faces belonging to the same audio function is called the Audio
Interface Collection (AIC). A device can have multiple Audio
Interface Collections active at the same time. These Collections
are used to control multiple independent audio functions lo-
cated in the same composite device.

2.2 Implementation
The audio stream is mono channel and sampled at 32khz.
Timer is set to generate interrupts periodically at 31.25usecs. A
service routine to serve this interrupt is developed that not
only buffers the audio stream that’s being received but also
performs the volume adjustments in the output stream. Simi-
larly the plugging of USB generates a interrupt USB_IRQn that
again is added to Nested Vector Interrupt Control and service
routine to the same is developed. The USB Interrupt service
routine reads device status, interrupts status and calls the rou-
tines based on the error the interrupt was triggered. The inter-
rupt in USB is triggered by standard USB events like power up
event, device read event etc. The Device, configuration,

interface and endpoint descriptors are defined by developer
according to guidelines provided in the Audio Device Class

Specification. The standard request and Audio device Class
specific request handling is done by the core USB library pro-

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-2014 497
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

vided in the stack. The Endpoint requests are also handled by
the core libraries but a developer can do changes to required

endpoint by creating independent endpoint handlers.

Fig.1. Flow Chart Describing implementation of USB Audio Class

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-2014 498
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

3 IMPLEMENTATION OF USB MASS STORAGE
3.1 Introduction
USB Mass Storage Class specifications are supported by the
USB Mass Storage Class Working Group (CWG). The titles of
these specifications are:

1. USB Mass Storage Class Control/Bulk/Interrupt
(CBI) Transport

2. USB Mass Storage Class Bulk-Only (BBB) Transport
3. USB Mass Storage Class UFI (UFI) Command Specifi-

cation
4. USB Mass Storage Class Bootability Specification
5. USB Mass Storage Class Compliance Test Specifica-

tion
6. USB Lockable Storage Devices Feature Specification

(LSD FS)
7. USB Mass Storage Class USB Attached SCSI Protocol

(UASP)
This paper deals with implementation of Bulk only transport
and bootability.

3.2 Implementation
A Bulk-Only Protocol requires a host to send a CBW to the

device and then attempt to make the appropriate data transfer
(In, Out or none). The device receives the Control Block Wrap-

Fig. 2. Two stage transaction of 128 data bytes
-per (CBW), checks and interprets it, attempts to satisfy the

host's request, and returns status via a Control Status Wrapper
(CSW). With bulk transfers, a maximum of 64 bytes may be
transferred in a single data stage transaction. A bulk transfer
that writes 128 data bytes requires two data stage transactions,
and has the structure as shown Fig.2.

There are four major tasks our device needs to perform to
be a mass storage device.

1. First is to get control block wrapper (CBW) which is
nothing but a command block and its associated in-
formation.

2. Second and third is to either get the bulk data input
or provide with a bulk data output.

3. Fourth is to set the control status wrapper (CSW)
which is a packet containing status of a command
block.

This CSW will inform the host about the receipt and vali-
dation of CBW and that its ready for another CBW. The host
cannot transfer another CBW to the device until the host has
received the CSW for any outstanding CBW. If the host issues
two consecutive CBWs without an intervening CSW or reset,
the device response to the second CBW cannot be determined.
The mass storage class header files provide definitions of func-
tion that is going to perform the get CBW function, set CSW
function and perform bulk data transfer. This file also pro-
vides with all the necessary functions require by device to be a
mass storage device. These include memory read, write and
verify function, stall endpoint routine and bulk transfer rou-
tines. These also comply to SCSI protocol for bulk transfer en-
abling them to be made into bootable disk drives. Except for
use of DMA for data transfer rest of all the core and hardware
libraries remains the same as that used in USB Audio Device
Class. Developer again needs to provide standard USB and
Mass Storage Class Device, Configuration, interface, endpoint
and vendor descriptors. Fig. 3. Describes implementation of
USB Mass Storage class as a sequence diagram.

4 SECONDARY BOOTLOADING THROUGH USB CHANNEL
4.1 Introduction
Almost all modern 32 bit microcontrollers have two methods
for bug fixes and product updates.

• ISP (In System Programming) is programming or re-
programming the on-chip flash memory, using the
boot loader software and UART0 serial port. This can
be done when the part resides in the end-user board.

• IAP (In Application Programming) is performing
erase and write operation on the on-chip flash
memory, as directed by the end-user application
code.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-2014 499
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Fig. 3. Sequence diagram describing implementation of USB Mass Storage class

There is primary bootloader and a secondary bootloader. A

primary bootloader is a firmware that resides in a microcon-
troller’s boot ROM block and is executed on power-up and
resets. The secondary bootloader is a piece of code which al-
lows a user application code to be downloaded using alterna-
tive channels other than the standard methods. After boot the
secondary bootloader will be executed that in turn will exe-
cute the end user program or application. The concept of this
is the basis of our theory that says that using secondary boot-
loader in target microcontroller and an OTG enabled device or
network based device we can reprogram our targeted micro-
controller through other than standard channels like USB or
LAN (Local Area Network). This will give end user freedom
to apply a single hardware for multiple control and acquisi-
tion tasks by just reprogramming the target hardware.

4.2 Description
A standard Mass Storage Class Device provides separate seg-
ments for SD Card and on chip memory. The Mass Storage
Class with USB secondary bootloader provides segment only
for flash memory. This segment is displayed as extended disk
on a computer. Now on a portable device say for example a
smartphone or tablet, the file format reading capabilities are
limited by their phone OS and most of them are able to read
only FAT32 system with few phones supporting all FAT12,
FAT32, exFAT and NTFS file system. Now as most of the mi-
crocontrollers this paper has dealt with have less than 32MB of
on chip memory, the file system of choice obviously becomes
FAT12. FAT12 is the preferred choice as FAT12 doesn’t require
segmentation and can have a stable segment of upto 32MB
(Maximum volume of drive). Moreover for simplification
purpose the flash code will appear as one single entity, mean-
ing a single file, solving any defragmentation problem. The
access to flash memory of target device can be developed in

either FAT12 or FAT32 file system depending on size of on
chip memory. The experiment performed was pretty simple; a
laptop was used to reprogram NXP 1768 with just simple file
transfer. A standard NXP secondary USB bootloader was used
with hardware entry into bootloader, modified in the code.
Hardware entry is provided to prevent accidental entry into
the secondary bootloader.

5 CONCLUSION AND FUTURE WORK
The implementation of device class and interface has con-
firmed the theory that a USB enabled portable device can be
reprogrammed by just a simple file transfer. Hence this can be
the first step to move away from our PC-centric environment
and become completely mobile, both in connectivity and de-
velopment.

The future work includes to be able to perform repro-
gramming using an OTG enabled phone, to implement FAT32
file system for the bootloader and to check the fault tolerance
and behavior of both bootloader and the application that will
be loaded. Moreover to find the limitation of FAT32 to be used
as a bootloader file system and finding a better way to make
bootloader compatible to maximum number of available OTG
enabled devices.

REFERENCES
[1] Gal Ashour, Billy Brackenridge, Oren Tirosh, Craig Todd, Remy Zimmer-

mann, Geert Knapen Universal Serial Bus Device Class Definition for Audio
Devices Release 1.0 March 18, 1998.

[2] Gal Ashour, Billy Brackenridge, Oren Tirosh, Craig Todd, Remy Zimmer-
mann, Geert Knapen Universal Serial Bus Device Class Definition for Audio
Data Formats Release 1.0 March 18, 1998.

[3] Gal Ashour, Billy Brackenridge, Oren Tirosh, Craig Todd, Remy Zimmer-

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-2014 500
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

mann, Geert Knapen Universal Serial Bus Device Class Definition for Termi-
nal Types Release 1.0 March 18, 1998.

[4] Al Rickey, Alan Haffner, Bill Stanley, Calaimany Bhoopathi, Curtis E. Stevens,
Darrell Redford Universal Serial Bus Mass Storage Class Bulk Only Transport
Revision 1.0 September 31,1999.

[5] John Garney, Ken Stufflebeam, David Wooten, Matt Nieberger, John How-
ard, Steve McGowan Universal Serial Bus Revision 2.0 April 27, 2000.

[6] Doug Azzarito, Fred Bhesania, Jim Blackson, Mark Bohm, Robert Chang,
Jason Chien Universal Serial Bus Mass Storage Specification for Bootability
Revision 1.0 October 25, 2004.

[7] Geert Knapen, Dan Ellis, Jim Koser, Yagal Blum, Dave Podsiadlo, Cristial
Chis Universal Serial Bus Device Class Definition for Basic Audio Devices Re-
lease 1.0 November 24, 2009.

[8] Amit Nanda, Hans van Antwerpen, Chuck Trefts, Mario Pasquali, Yuji Oishi,
Steve McGowan Universal Serial Bus Mass Storage Class Specification Over-
view Revision 1.4 February 19, 2010

[9] Jing Wang, Kenneth Ma, Thomas Hackett, Pawel Eichler, Brad Saunders,
Steve McGowan Universal Serial Bus Mass Storage Class Specification For
UASP Bootability Revision 1.0 March 04, 2013.

IJSER

http://www.ijser.org/

	1 Introduction
	2 Implementation of usb audio
	2.1 Introduction
	2.2 Implementation

	3 Implementation of usb mass storage
	3.1 Introduction
	3.2 Implementation

	4 Secondary bootloading through usb channel
	4.1 Introduction
	4.2 Description

	5 Conclusion and future work
	References

